Duality for vector optimization problems via a general scalarization

نویسندگان

  • Radu Ioan Boţ
  • Sorin-Mihai Grad
چکیده

Considering a vector optimization problem to which properly efficient solutions are defined by using convex cone-monotone scalarization functions, we attach to it, by means of perturbation theory, new vector duals. When the primal problem, the scalarization function and the perturbation function are particularized, different dual vector problems are obtained, some of them already known in the literature. Weak and strong duality statements are delivered in each case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector duality for convex vector optimization problems with respect to quasi-minimality

We define the quasi-minimal elements of a set with respect to a convex cone and characterize them via linear scalarization. Then we attach to a general vector optimization problem a dual vector optimization problem with respect to quasi-efficient solutions and establish new duality results. By considering particular cases of the primal vector optimization problem we derive vector dual problems ...

متن کامل

A general approach for studying duality in multiobjective optimization

A general duality framework in convex multiobjective optimization is established using the scalarization with K-strongly increasing functions and the conjugate duality for composed convex cone-constrained optimization problems. Other scalarizations used in the literature arise as particular cases and the general duality is specialized for some of them, namely linear scalarization, maximum(-line...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

An Optimal Alternative Theorem and Applications to Mathematical Programming

Given a closed convex cone P with nonempty interior in a locally convex vector space, and a set A ⊂ Y , we provide various equivalences to the implication A ∩ (−int P ) = ∅ =⇒ co(A) ∩ (−int P ) = ∅, among them, to the pointedness of cone(A + int P ). This allows us to establish an optimal alternative theorem, suitable for vector optimization problems. In addition, we characterize the two-dimens...

متن کامل

Hölder continuity of solution maps to a parametric weak vector equilibrium problem

In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010